Analysis of the interaction of helmholtz resonators in periodic acoustic metamaterials depending on its orientation with the acoustic source.
Time: 1:20 pm
Author: David Ramírez
Abstract ID: 1369
Acoustic screens based on sonic crystals constitute one of the most promising technological bets of recent years in the field of environmental acoustics. Sonic crystals are defined as new materials formed by arrays of acoustic scatterers embedded in air. The design of these screens is made using powerful simulation models that provide reliable results without the need of expensive experimental testing. This project applies the finite elements method in order to analise an acoustic barrier that includes (Helmholtz) resonators in its scatterers, and studies the interference of the sonic crystal with the effect of the Helmholtz resonator, depending on its orientation with the acoustic source.
You must be logged in to download paper. Click here to login
Band structure and defect states in acoustic phononic crystals using expansion and micro-perforated chamber mufflers
Time: 2:00 pm
Author: Adriano Mitsuo Goto
Abstract ID: 1775
The expansion and the micro-perforated chamber mufflers are acoustic silencers designed to attenuate the sound propagation at duct systems. These silencers can show interesting phononic crystals behavior when set periodically. The concept of phononic crystals still is an emerging topic in vibration and sound control. The periodic arrangement of acoustic silencers can provide a significant enhancement of the sound absorption due to the wave filtering property where the wave cannot propagate at certain frequency ranges, called stopbands or bandgaps. However, these properties may be affected by defects, like the break of the periodicity due to manufacturing errors. For the present work, the influence of some defects on the acoustic efficiency is investigated numerically for expansion and micro-perforated chamber mufflers. A direct and efficient approach is used to obtain the transfer and dynamic stiffness matrices. Simulated examples are used to calculate the forced response, transmission loss, and dispersion diagram, which are verified by other methods.
You must be logged in to download paper. Click here to login
Optimization of an absorbing surface with 2D Helmholtz resonators for reduced sensitivity to the incidence angle
Time: 8:00 am
Author: Diana Maria Garza-Agudelo
Abstract ID: 2056
It has been shown in several recent publications that acoustic materials consisting of a combination of resonators tuned to different frequencies can render high absorption coefficient values over an extended frequency range while maintaining compactness. This makes them attractive solutions for applications in which low frequency sound control is needed, and/or when there are significant space constraints. Nevertheless, the acoustic performance of these surfaces varies with the angle at which a wave impinges on the surface. The changes in the absorption characteristics with the incidence angle occur both on the maximum absorption coefficient, and on the effective frequency bandwidth. Numerical optimization is a tool that can help realize designs with a large degree of geometrical freedom, and using this framework we have demonstrated an array of coupled 2D Helmholtz resonators that is less sensitive to changes in the incidence angle.
You must be logged in to download paper. Click here to login
Tunable frequency bandgaps in elastic metamaterials with internal contacts
Time: 6:40 pm
Author: Eunho Kim
Abstract ID: 2162
We design an elastic metamaterial with internal contacts and study the tunable frequency band structure of the metamaterial. It is well-known that the frequency band of granule structures consisting of particles changes depending on the system's compression because of the nonlinearity of the contact between particles. We adopt this efficient tunning mechanism, i.e., contact, in the design of continuum type elastic metamaterials. We first design a unit cell structure showing internal contacts under compression and fabricate it using a 3D printer. We numerically and experimentally identify that the unit cell's stiffness suddenly increases when the internal contact happens. This sudden change of the stiffness induces a change of frequency characteristics of the structure. Here, we demonstrate that internal contacts are useful for designing various frequency bandgaps and tuning them efficiently.
You must be logged in to download paper. Click here to login
Sound reflection of acoustic porous metasurfaces in uniform mean flow
Time: 6:20 pm
Author: Renhao QU
Abstract ID: 2182
Acoustic metasurfaces are artificial 2D structures with a sub-wavelength thickness that can realize some exotic properties such as non-trivial refraction, broadband and low frequency absorption. However, most relevant studies are still in a static medium, hindering their realistic applications in aviation, where background flow exists. To address it, the effects of mean flow on the acoustic performance of metasurfaces, which is designed based on the generalized Snells law (GSL) to achieve anomalous reflections, are systemically studied. Firstly, an analytical model of GSL taking the effect of background uniform mean flow into account is built, in which the wavenumbers of both incident and reflected waves are corrected. Then, taking an acoustic porous metasurface for instance, the effectiveness of the derived model is validated by numerical simulations. Results reveal that the reflected waves are deflected in the presence of background flow. The critical incident angle, at which the incident sound wave is converted to surface wave, decreases with the increasing flow velocity. Since the converted surface wave can only propagate along the metasurface, there is little sound energy radiated into far field, which is benefit for the noise attenuation in the presence of flow.
You must be logged in to download paper. Click here to login
Design of Acoustic Cloak Using Generative Modeling and Gradient-Based Optimization
Time: 1:40 pm
Author: Linwei Zhuo
Abstract ID: 2431
Metamaterials are engineered composites that can achieved electromagnetic and mechanical properties that do not exist in natural materials by rearranging their structures. Due to the complexity of the objective functions, it is difficult to find the globally optimized solutions in metameterial design. This talk outlines a gradient-based optimization with generative networks that can search for the globally optimized cloaking devices over a wide range of parameters. The GLO-Net[1] model was developed originally for one-dimensional nano-photonic metagratings is generalized in this work to design two-dimensional broadband acoustic cloaking devices by perturbing positions of each scatterer in planar configuration of cylindrical scatterers. Such optimized cloaking devices can efficiently suppress the total scattering cross section to the minimum at certain parameters over range of wavenumbers. During training each iteration, a generative model generates a batch of metamaterials and compute the total scattering cross section and its gradients using an in-house built multiple scattering MATLAB solver. To evaluate our approach, we compare our obtained results with fmincon in MATLAB. Reference: [1] Jiaqi Jiang and Jonathan A. Fan. Simulator-based training of generative neural networks for the inverse design of metasurfaces. Nanophotonics, 9(5):10591069, nov 2019.
You must be logged in to download paper. Click here to login
Design of a metamaterial-based muffler for a target frequency range
Time: 6:40 am
This work proposes an acoustic metamaterial-based muffler that effectively blocks a transmission noise for a target frequency range. Since the acoustic metamaterial-based muffler consists of arrayed unit cells, its noise attenuation performance is strongly affected by the internal layout of the unit cell. The wave transmission characteristics of an acoustic metamaterial is explained by the effective bulk modulus and dispersion curve of an unit cell. Therefore, the internal layout of the unit cell should be optimally designed so that its band gap should include the target frequency range of a muffler. To the end, an acoustical size optimization problem is formulated to design a unit cell of the muffler and is solved for a given design requirement. The noise blocking frequency range of the unit cell is characterized by the bandgap in its dispersion curve during the optimization process. The wave transmission characteristics of the metamaterial muffler is validated experimentally.
Author: Bunghun An
Abstract ID: 2465
This work proposes an acoustic metamaterial-based muffler that effectively blocks a transmission noise for a target frequency range. Since the acoustic metamaterial-based muffler consists of arrayed unit cells, its noise attenuation performance is strongly affected by the internal layout of the unit cell. The wave transmission characteristics of an acoustic metamaterial is explained by the effective bulk modulus and dispersion curve of an unit cell. Therefore, the internal layout of the unit cell should be optimally designed so that its band gap should include the target frequency range of a muffler. To the end, an acoustical size optimization problem is formulated to design a unit cell of the muffler and is solved for a given design requirement. The noise blocking frequency range of the unit cell is characterized by the bandgap in its dispersion curve during the optimization process. The wave transmission characteristics of the metamaterial muffler is validated experimentally.
You must be logged in to download paper. Click here to login
The study of ultrasonic layer-matched to penetrate bone
Time: 6:20 am
Author: lianchun li
Abstract ID: 2491
Acoustic metamaterial layer-matched was designed to enhance ultrasound penetration through bones. The conventional ultrasound layer-matched, known as coupling agent, can only enhance the transmittance of ultrasound to soft biological media, such as cartilage and muscle, but cannot penetrate hard media, i.e. bone. An ultrasound layer-matched based on the impedance matching principle is presented to make ultrasound penetrate bone, which parameters are designed by acoustic metamaterial equivalent parameter technique. The ultrasound layer-matched is fabricated by 3D printing which can correct the aberrations of the bone. Some configurations are investigated by numerical simulation as well as experiments in the anechoic chamber. In particular, a bone matching layer can be designed optimally for the definite thickness of the bone and the definite operating frequency of the ultrasound probe, which enhanced ultrasound to penetrate both of the layer-matched and the bone with no echo. The results of experiments and simulations show that the proposed ultrasound layer-matched metamaterial can enhance the transmission efficiency of ultrasound to penetrate some hard biological media bones.
You must be logged in to download paper. Click here to login
Optimization of metamaterials with complex neck shapes for aircraft cabin noise improvement
Time: 11:20 am
Author: Tenon Charly KONE
Abstract ID: 2567
More frequently, recent low-frequency noise control techniques commonly implemented in aerospace and ground transportation as well as in building applications are based on acoustic metamaterial concepts. The technologies proposed in the literature, using layered porous materials with embedded Helmholtz resonators (HR), exhibited considerable potential when tuned at tonal, multi-tonal or narrow frequency bands. Our recent investigations have shown that the acoustical performance of these metamaterials can be further improved by the use of resonators with complex shaped necks. These necks can be designed and optimized to minimize the HR resonance frequencies (small form factor) and maximize the sound transmission loss (STL) performance. This paper presents the developed design optimization method for HRs with complex neck shapes recessed within the HR cavity. The HRs were embedded in a layer of porous material. The implemented approach was based on the transfer matrix methods (TMM) in series and in parallel coupled to a multi-objective optimization. Complex optimum neck shapes were obtained allowing for a shift towards the low frequencies of the resonator resonance with a good STL performance. Moreover the STL calculated using the TMM approach were observed to be in excellent agreement with the finite element method numerical results.
You must be logged in to download paper. Click here to login
Multi-tonal low frequency noise control for aircraft cabin using Helmholtz resonator with complex cavity
Time: 11:40 am
Author: Tenon Charly KONE
Abstract ID: 2569
The noise control at multiple tonal frequencies simultaneously, in the low frequency range, is a challenge for aerospace, ground transportation and building industries. In the past few decades, various low frequency noise control solutions based on acoustic metamaterial designs have been presented in the literature. These solutions showed promising performance and are considered a better alternative to conventional sound insulation materials. In the present investigation, it was noticed that subdividing the cavity of a Helmholtz resonator allowed the control of multi-tonal noise at several resonance frequencies simultaneously and a shift of the resonance peaks towards the low frequencies. This paper proposes concepts of Helmholtz resonators with subdivided cavities to improve the sound transmission loss (STL) performance and simultaneously control the noise at several tonal frequencies. HRs with cylindrical shaped cavities were embedded in a layer of porous material. The STL of the metamaterial noise insulation configuration was predicted using serial and parallel assemblies of transfer matrices (TMM) incorporating a thermo-viscous-acoustic approach to accurately account for the viscous and thermal losses of acoustic wave propagation within the metamaterial. The STL calculated using the proposed TMM approach were observed to be in excellent agreement with the finite element method (FEM) numerical results.
You must be logged in to download paper. Click here to login
Broadband noise mitigation using coupled Helmholtz resonators: a numerical study
Time: 1:00 pm
Author: Mariia Krasikova
Abstract ID: 2573
In this work we investigate a periodic structure in the frequency range from 20 Hz to 5500 Hz designed for broadband noise insulation. The considered unit cell consists of a simple structure: a pair of polymer pipes with slits carved along the axes, representing two coupled Helmholtz resonators. In order to develop a design with a broad band gap, we analyze the eigenmodes of the infinite two-dimensional structure considering their symmetry and interaction. This analysis is supported by parametric optimization of the resonator geometry. The obtained band diagram is compared with numerically determined transmission coefficient of a finite structure based on the same unit cell. The number of unit cells of the finite structure is chosen to be sufficient for demonstration of insulating properties and stop band formation. Furthermore, we analyze how the transmission coefficient is linked to the pressure field distribution inside the resonators. Owing to the simplicity of the geometry, the obtained results may become a basis for development of budget-friendly passive systems for broadband noise insulation within the audible range of frequencies.
You must be logged in to download paper. Click here to login
Controlling the amount of acoustic absorption by using clusters of hard cylinders
Time: 12:20 pm
Author: Vicente Cutanda Henriquez
Abstract ID: 2759
The viscothermal absorption of a cluster of hard cylinders periodically arranged in air is directly related with the filling fraction of the underlying lattice. In this work, we present a comprehensive study of the viscous absorption of clusters with circular external shape. The study has been performed by using a homogenization theory in which the clusters have been represented by a single fluid-like cylinder with effective parameters. The validity of the homogenization approach has been supported with numerical experiments in which the viscosity of the actual cluster is calculated with an improved version of the boundary element method. The simulations have been performed by embedding the clusters in a multimode impedance tube. For example, for a circular cluster containing 817 hard cylinders distributed in a hexagonal lattice with filling ratio of 0.836, the absorptive factor calculated with the homogenization approach is 41.5%, which underestimates by about 1% the value obtained with the complete cluster.
You must be logged in to download paper. Click here to login
Inverse metacluster design using generative modeling for minimal scattering response
Time: 11:00 am
Author: Peter Lai
Abstract ID: 2913
Metamaterials are subwavelength-sized artificial structures with the ability to manipulate incident waves in such a way that affects how the energy propagates throughout the medium. In acoustics, particularly placed scattering elements can reduce the total scattering cross section (TSCS) response. We propose a method to inversely design acoustic metamaterial configurations using deep learning and generative modeling. Using our proprietary multiple scattering solver with MATLAB optimization toolbox, we generate a dataset of optimal configurations with minimized TSCS within a discrete range of wavenumbers. We use this dataset to train a Conditional Wasserstein Generative Adversarial Network (cWGAN) to generate similar metacluster designs corresponding to specified input TSCS. To improve the coordinate recognition ability of the cWGAN, we include the novel CoordConv layer in the generator and critic. After training, the cWGAN can produce a variety of optimal configurations given an expected TSCS. Evaluating TSCS of generated configurations shows that the model is capable of proposing scatterer configurations that are comparable or better than the dataset within the optimized range.
You must be logged in to download paper. Click here to login
Enhancement of sound absorption in a band frequency using thin porous layer-lined metasurfaces
Time: 6:00 am
Author: Joong Seok Lee
Abstract ID: 2962
When a porous layer is installed on a hard wall, sound absorption performance is mainly determined by thickness of the layer. Although material parameters of porous materials are strongly dependent on frequencies, the thickness limitation related to the quarter wavelength of incident sound wave has been a key factor in the treatment of porous layers for noise reduction. This implies that a thicker porous layer is required to absorb lower-frequency sound effectively. To overcome the thickness limitation, metaporous layers, which are named as a compound of sound absorbing porous layers with the concept of metamaterials have received much attentions for alternative implementations of porous layers. Recently, we proposed a new type of metaporous layer for enhancing sound absorption performance in a specified broad frequency band. The proposed metaporous layer is constructed with a thin porous layer backed by a reactive metasurface consisting of an array of bent channels. Formation of sound absorption band is directly determined by the characteristics of scattered sound field from the proposed metaporous layer. Analytical and numerical investigations show that the metasurface is considerably responsible for the enhanced sound absorption in the proposed metaporous layer, while sound dissipation occurs only in the thin porous layer.
You must be logged in to download paper. Click here to login
Experimental and numerical investigations of ventilated acoustic metamaterial based in-parallel arrangement of Helmholtz resonator for façade screen
Time: 12:40 pm
Author: Denilson Ramos
Abstract ID: 3078
Understanding urban noise as a serious environmental problem in urban centers, the development and application of noise control strategies have demanded a recent effort by several researches. In this case, the development of acoustic metamaterial artificially designed to manipulate the wave phenomena has become a recent topic, aiming at optimized responses, and enables the development of subwavelength devices with potential application in passive ventilation and noise mitigation, providing better environmental conditions in buildings. The present paper intends to contribute to the knowledge in this field by investigating the concept of an acoustic metamaterial with negative bulk modulus based in a parallel arrangement of Helmholtz Resonators. Experimental and numerical investigations are carried out to determine the acoustic potential of the proposed meta structure in terms of sound absorption and sound transmission loss. The developed concept exhibits significant benefits in the properties of sound transmission loss, and seems a potential application for noise control at specific frequency bands (mainly at low to middle frequency) in building façades.
You must be logged in to download paper. Click here to login
Wave-based control for nonreciprocal acoustics using a planar array of secondary sources
Time: 8:20 am
Author: Joe Tan
Abstract ID: 3110
There has been significant interest in the design of nonreciprocal acoustic devices that allow acoustic waves to be perfectly transmitted in one direction, whilst the acoustic waves propagating in the opposite direction are blocked or reflected. Previously proposed nonreciprocal acoustic devices have broken the symmetry of transmission by introducing nonlinearities or resonant cavities. However, these nonreciprocal acoustic devices typically have limitations, such as signal distortions and the bandwidth over which nonreciprocal behaviour can be achieved is narrow. This paper will investigate how active control can be used to minimise the transmitted and reflected waves independently to achieve nonreciprocal sound transmission and absorption using a planar array of secondary sources in a two-dimensional environment. The advantage of the proposed active control system is that it is fully adaptable, which means that the directivity of nonreciprocal behaviour can also be reversed. The performance of the proposed wave-based active control system is investigated for a range of angles of incidence and its performance limitations are explored.
You must be logged in to download paper. Click here to login
Adjustable sound insulation frequency band through the combination of membrane-type acoustic metamaterial array
Time: 6:00 pm
Author: Tenglong Jiang
Abstract ID: 3472
Membrane-type acoustic metamaterials are thin films or plates composed of periodic units with small additional mass. A large number of studies have shown that these metamaterials exhibit tunable anti-resonance, and their transmission loss values are much higher than the corresponding quality laws. At present, most researches on membrane-type acoustic metamaterials focus on the unit cell, and the sound insulation frequency band can only be adjusted by adjusting the structural parameters and material parameters. In this paper, two kinds of acoustic metamaterials with different structures are designed, which are the center placement of the mass and the eccentric placement of the mass.The two structures have different sound insulation characteristics. By designing different array combinations of acoustic metamaterials, the sound insulation peaks of different frequency bands are obtained. This paper studies the corresponding combination law, and effectively realizes the adjustable sound insulation frequency band.
You must be logged in to download paper. Click here to login
An integrated toolchain for the design of aeroacoustic metamaterials: the AERIALIST H2020 project.
Time: 12:00 pm
Author: Umberto Iemma
Abstract ID: 2207
The project AERIALIST (AdvancEd aicRaft-noIse-AlLeviation devIceS using meTamaterials), funded within the Breakthrough Innovation topic of the H2020 program, has closed its activity on May 2020. The objective of the project was the disclosure of the potential of metamaterials in developing disruptive devices for the mitigation of aircraft noise, in order to contribute to the identification of the breakthrough technologies targeted at the achievement of the noise reduction targets foreseen by the ACARE Flightpath 2050. Although targeted to low TRL, AERIALIST has been focused on the development of an integrated toolchain capable to address the entire design loop, from the early conception to the numerical and experimental proof of concept, up to the final design and manufacturing. The toolchain was founded onto four pillars: i) the extension of the acoustic metamaterial theory to aeroacoustics; ii) the exploitation of the latest additive manufacturing technologies; iii) the wind-tunnel assessment of the selected concepts; iv) the identification of a development roadmap towards higher TRL. After three years of activity, the project has attained all its objectives. The present paper is a review of the main outcomes of the project, their application potential and relevance to the ACARE objectives.
You must be logged in to download paper. Click here to login