Broadband force spectrum of a pump-jet under inflow turbulence
Time: 7:20 am
Author: 舒伊康 石
Abstract ID: 1290
To clarify the characteristics of unsteady force spectrum of a pump-jet running under inflow turbulent,the turbulence grid and Fourier synthesis method is employed to produce incoming turbulence with spatial flow structure and temporal fluctuation, which is combined with LES (large eddy simulation) to obtain broadband unsteady force spectrum of the pump-jet. The results show that the proposed method could obtain the unsteady force broadband spectrum for duct, stator and rotor. The unsteady force broadband spectrum of the pump-jet is composed of the "hump" around the blade passing frequency and its multiples, the characteristic line spectrum at the stator blade passing frequency and shaft frequency of adjacent stator multiples. With the number of blades increasing, the "hump" becomes more obvious, the characteristic peak changes periodically and reaches the minimum when the number of blades is the number of rotors. Due to the use of the stator and duct, the amplitude of the unsteady force broadband spectrum of the pump-jet is higher than propeller, but the "hump" is not as obvious as propeller. The research is helpful to clarify the unsteady force characteristics of pump-jet induced by turbulence, and provide ideas for the vibration and noise reduction of pump-jet.
You must be logged in to download paper. Click here to login
Numerical comparative investigation into tip vortex cavitation flow and noise of submarine propellers using incompressible and compressible hybrid computational hydro-acoustic solvers
Time: 7:40 am
Author: Garam Ku
Abstract ID: 1958
In this study, the effects of gas concentration and bubble collapse on tip vortex cavitation noise of NACA16-020 wings are investigated using coupled Eulerian-Lagrangian method based on sequential application of Reynolds averaged Navier-Stokes (RANS) solver, bubble dynamics model and acoustic analogy. The bubble dynamics model used in the preceding study (Ku et al., 2020) is modified by including the gas pressure terms and the bubble collapse model, which depends on the timing and threshold of bubble collapse, the number, initial radius and location of divided bubbles. The validity of the modified bubble dynamics model is confirmed through its application to a benchmark problem where single bubble is triggered by laser. Then, the coupled Eulerian-Lagrangian method based on the modified bubble dynamic model is applied for the prediction of tip-vortex cavitation noise of NACA16-020 wing. The predicted results of the tip vortex pattern and acoustic pressure spectrum are compared with the measured results, which shows closer agreements between two results than those in the previous study.
You must be logged in to download paper. Click here to login
Numerical Study of Airfoil Tonal Noise Reduction using Segmented Elastic Panel Configuration
Time: 8:00 am
Author: Muhammad Irsalan Arif
Abstract ID: 2258
In this paper, a novel passive method for airfoil tonal noise reduction is proposed using a configuration of two segmented elastic panels mounted on the airfoil. Numerical investigation using perturbation evolution method is carried out at a low Reynolds number based on airfoil chord of 5x10 and an angle of attack of 5. The passive method of employing a single panel has shown promising tonal noise reduction capabilities where the resonating panel located just ahead of the sharp growth of boundary layer instability within the airfoil separation bubble provided the strongest reduction of instabilities and noise reduction up to 3 dB has been achieved. The idea is extended in the present study by employing a two-panel configuration based on the localized flow characteristics over the airfoil surface. Five different panel configurations are designed and their effectiveness in terms of tonal noise reduction is evaluated and compared with baseline configuration. The azimuth and spectral analyses indicate the different extent of noise reduction for each configuration and even noise amplification in one of them. A significant noise reduction up to 8 dB is observed for the optimum configuration indicating the effectiveness of this novel method for devices operating at low Reynolds number.
You must be logged in to download paper. Click here to login
The multi-functional rotor aerodynamic and aeroacoustic test platform at HKUST
Time: 8:20 am
Author: Han Wu
Abstract ID: 2695
This paper describes the multi-functional rotor noise and aerodynamics test platform at the Hong Kong University of Science and Technology (HKUST). To investigate the noise characteristics of propellers with aerodynamic flows, the test rig is installed in the 2.5×2 (m) low-speed and low-noise wind tunnel in the Aerodynamic and Acoustic Facility (AAF) at HKUST. The wind tunnel can facilitate flow from 0 to 40 m/s. The test rig is assembled in a turntable on the ceiling of the tunnel wall, which enables the testing range of pitch angle can vary from 0° (axial flow) to 90° (parallel flow), with an accuracy of 0.1°. The noise produced by the rotor is measured by a set of wall-mounted surface microphones. Semi-empirical calibration is conducted to quantify the noise reflection by the tunnel walls. A low-noise struct has been designed and manufactured to locate a set of far-field microphones equipped with nosecone, to improve the quality of acoustic measurement inside the flow. In addition, a synchronized system is developed to conduct the phase-locking Particle Image Velocimetry (PIV) measurement on the rotor, to study the flow pattern to better understand the noise generation mechanism.
You must be logged in to download paper. Click here to login
Experimental assessment of the noise characteristics of propellers for commercial drones
Time: 8:40 am
Author: Han Wu
Abstract ID: 2697
Multi-copters or drones are engaged in a wide range of industrial applications for their flexibility, safety and low-cost. The noise emission is becoming an issue with the expanding applications, among which the propellers that drive the drones are the major sources of noise. In this work, the noise characteristics of small-scale propellers is experimentally investigated using the advanced rotor aerodynamics and aeroacoustics test platform in an anechoic chamber at the Hong Kong University of Science and Technology (HKUST). The study will focus on the representative off-the-shelf propellers. The rotor noise will be measured by a linear array with 20 microphones, and the aerodynamic forces will be acquired by using the high-accuracy load cells. The dependence of both the tonal and broadband noise radiation with the thrust and rotation speed at various conditions will be tested. The study will enhance our understanding of the noise features of the multi-rotor powered drones, and will provide us with a better understanding of the status of the drone noise impact on the environment.
You must be logged in to download paper. Click here to login