Sound field reconstruction in rooms with deep generative models



The characterization of Room Impulse Responses (RIR) over an extended region in a room by means of measurements requires dense spatial with many microphones.  This can often become intractable and time consuming in practice. Well established reconstruction methods such as plane wave regression show that the sound field in a room can be reconstructed from sparsely distributed measurements. However, these reconstructions usually rely on assuming physical sparsity (i.e. few waves compose the sound field) or trait in the measured sound field, making the models less generalizable and problem specific. In this paper we introduce a method to reconstruct a sound field in an enclosure with the use of a Generative Adversarial Network (GAN), which s new variants of the data distributions that it is trained upon. The goal of the proposed GAN model is to estimate the underlying distribution of plane waves in any source free region, and map these distributions from a stochastic, latent representation. A GAN is trained on a large number of synthesized sound fields represented by a random wave field and then tested on both simulated and real data sets, of lightly damped and reverberant rooms.