-
Abstract
The goal of this study was to characterize transportation noise by vehicle class in two urban communities, to inform studies of transport noise and ultra-fine particulates. Data were collected from April to September 2016 (150 days) of continuous recording in each urban community using high-resolution microphones. Training data was created for airplanes, trucks/buses, and train events by manual listening and extraction of audio files. Digital signal processing using STFT and Hanning windowing was performed in MATLAB, creating audio spectrograms with varying frequency: log vs linear frequency scales, and 4K vs 20K max frequency. For each of the four spectrogram sets, a neural net model using PyTorch was trained via a compute cluster. Initial results for a multi-class model provide an accuracy of 85%. Comparison between a selection of frequency scales and expanding to longer time periods is ongoing. Validation with airport transport logs and local bus and train schedules will be presented.