Quantifying sound transmission of building structures for optimization in early-stage design



Technological advancements in computational building modeling have enabled designers to conduct many simulations at both the building and component levels. With the evolution of parametric modeling at the early stage of building design, designers can evaluate multiple design options and identify the best performing solutions. However, to conduct design space exploration or optimization, an objective function is needed to evaluate a design’s performance. While defined objectives exist for building design considerations such as sustainability, energy usage, and structural performance there is not a single, encompassing objective that can accurately assess acoustic performance for optimization. This paper proposes the development of a novel acoustic objective function that encompasses sound transmission when designing floors, walls, or other acoustic barriers. The composite function will incorporate both air-borne and structure-borne sound simultaneously to determine the appropriate percentages for the formulation of the composite function. The results of the composite acoustic function for multiple floor constructions will be compared for the determination of a final acoustic transmission composite function. This study will detail why the implementation of a composite acoustic function is valuable for design optimization for sound transmission, what the limitations of this method are, and future applications of a composite acoustic function.