Performance of a friction ring DVA for vibration control of a flywheel



A flexible ring DVA with friction contact interfaces (essentially a viscoelastic-friction DVA) is proposed to suppress vibration of a flywheel, two other cases are also studied, i.e., viscoelastic DVA and friction DVA. Based on an equivalent 3 degrees of freedom (DOFs) dynamic model, displacement response of the flywheel-DVA are obtained by using harmonic balance method (HBM). It is shown that all three types of DVA can suppress vibration of the flywheel effectively, bandwidth of the viscoelastic-friction DVA is enlarged due to the existence of friction interface. Performances of the DVA are evaluated by analyzing the displacement responses and forces (i.e., spring force, damping force and friction force). It is shown that the frequency corresponding to the turning point on the response curve is the critical frequency at which dynamic vibration absorption takes place, and it is also the frequency at which the friction force begins to take effect. In the process of emergence and disappearance of the dynamic vibration absorption, the friction force plays a role similar to a