Parametric optimization of aircraft arrival trajectories for aviation noise mitigation using BADA4 performance model

-

Abstract

Successful mitigation of aviation noise is a key enabler for sustainable aviation growth. A key focus of this effort is the noise arising from aircraft arrival operations. Arrival operations are characterized by the use of high-lift devices, deployment of landing gear, and low thrust levels, which results in the airframe being the major component of noise. In order to optimize for arrival noise, management of the flap schedule and gear deployment is crucial. This research aims to create an optimization framework for evaluating various aircraft trajectories in terms of their noise impact. A parametric representation of the aircraft arrival trajectory will be created to allow for the variation of aircraft’s flap schedule. The Federal Aviation Administration’s Aviation Environmental Design Tool will be used to simulate the aircraft trajectory and performance, and to compute the noise metrics. Specifically, the latest performance model from EUROCONTROL called “Base of Aircraft Data – Family 4” will be used. This performance model contains higher fidelity modeling of aircraft aerodynamics and other characteristics which allows for better parametric variation.