Moving object detection and tracking based on Doppler ultrasound



Fetal health monitoring during pregnancy has become a necessary procedure. Fetal heart rate (FHR) monitoring can determine fetal development or presence of heart disease and evaluate fetal well-being. The FHR measurement uses typically an acoustic probe-based Doppler ultrasound.
Doppler ultrasound method transmits a continuous wave signal to the abdomen of a pregnant woman to receive a reflected signal from the fetal heart. Periodic displacement of the heart tissue produces the Doppler effect and the phase change of the reflected wave is proportional to the velocity of the fetal heart. The reflected signal is modulated into a phase signal and the received signal is demodulated to detect the heart rate. The current clinician system consists of a single probe and requires the probe to be manipulated to the optimal position to measure FHR. The system is highly dependent on trained diagnostic experts. The movement of the pregnant woman and the fetus leads to the misaligned acoustic beam which degrades the reliability of the measurement.
This work presents a detection and tracking system using a Doppler signal to compensate for the target’s movement. The system is implemented by integrating multi-channel probes interfaced to a Doppler signal converter with a 2-degree of freedom (DOF) motor device. This work describes the characteristics of two key components: Doppler signals of multi-channel probes according to the direction of the acoustic beam and the algorithm with a 2-DOF tracking system.