Generative Adversarial Neural Network for Semi-supervised Planetary Gearbox Fault Diagnosis



Detecting bearing faults in advance is critical for mechanical and electrical systems to prevent economic loss and safety hazards. As part of the recent interest in artificial intelligence, deep learning (DL)-based principles have gained much attention in intelligent fault diagnostics and have mainly been developed in a supervised manner. While these works have shown promising results, several technical setbacks are inherent in a supervised learning setting. Data imbalance is a critical problem as faulty data is scarce in many cases, data labeling is tedious, and unseen cases of faults cannot be detected in a supervised framework. Herein, a generative adversarial network (GAN) is proposed to achieve unsupervised bearing fault diagnostics by utilizing only the normal data. The proposed method first adopts the short-time Fourier transform (STFT) to convert the 1-D vibration signals into 2-D time-frequency representations to use as the input to our (DL) framework. Subsequently, a GAN-based latent mapping is constructed using only the normal data, and faulty signals are detected using an anomaly metric comprised of a discriminator error and an image reconstruction error. The performance of our method is verified using a classic rotating machinery dataset (Case Western Reserve bearing dataset), and the experimental results demonstrate that our method can not only detect the faults but can also cluster the faults in the latent space with high accuracy.