Experimental and numerical investigations of ventilated acoustic metamaterial based in-parallel arrangement of Helmholtz resonator for façade screen



Understanding urban noise as a serious environmental problem in urban centers, the development and application of noise control strategies have demanded a recent effort by several researches. In this case, the development of acoustic metamaterial artificially designed to manipulate the wave phenomena has become a recent topic, aiming at optimized responses, and enables the development of subwavelength devices with potential application in passive ventilation and noise mitigation, providing better environmental conditions in buildings. The present paper intends to contribute to the knowledge in this field by investigating the concept of an acoustic metamaterial with negative bulk modulus based in a parallel arrangement of Helmholtz Resonators. Experimental and numerical investigations are carried out to determine the acoustic potential of the proposed meta structure in terms of sound absorption and sound transmission loss. The developed concept exhibits significant benefits in the properties of sound transmission loss, and seems a potential application for noise control at specific frequency bands (mainly at low to middle frequency) in building façades.