Effect of junction type on the vibroacoustic response of a system of plates


Additional Speakers:


Modelling of junctions is one of the most challenging tasks in vibroacoustics, especially for Statistical Energy Analysis (SEA), where the results heavily depend on the damping (DLF) and coupling loss factors (CLF). Also, it is an interesting question to determine that to what extent does the DLF or CLF contribute to the overall vibroacoustic characteristics of a structure? The aim of this paper is to investigate via measurements and SEA simulations the effect of the ratio of DLF and CLF on the response of a system for various junctions, such as riveting, bolting, line and point welding, between two steel plates. Loss matrices are determined experimentally by the Power Injection Method in the 200-1600 Hz frequency range. The simulation was performed in the ESI VA One software by using its analytical CLF formulations and compared to experimental data. For the reference case, a bended plate structure was considered, representing an ideal junction between two subsystems. This was equipped with damping foils to ensure the same weight and then compared to the results from other joints. Results showed that increasing the CLF could be more effective than focusing on increasing the DLF.