Combination of gated recurrent unit and Network in Network for underwater acoustic target recognition



Underwater acoustic target recognition is an important part of underwater acoustic signal processing and an important technical support for underwater acoustic information acquisition and underwater acoustic information confrontation. Taking into account that the gated recurrent unit (GRU) has an internal feedback mechanism that can reflect the temporal correlation of underwater acoustic target features, a model with gated recurrent unit and Network in Network (NIN) is proposed to recognize underwater acoustic targets in this paper. The proposed model introduces NIN to compress the hidden states of GRU while retaining the original timing characteristics of underwater acoustic target features. The higher recognition rate and faster calculation speed of the proposed model are demonstrated with experiments for raw underwater acoustic signals comparing with the multi-layer stacked GRU model.